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Abstract 

In the context of rapid data growth at PT Chemco Harapan Nusantara, optimizing the efficiency 

and accuracy of document search engines becomes very important. Current search engines face 

difficulties in accurately predicting user needs and take a long time to find documents. This study 

aims to overcome these challenges through a hybrid approach that combines Trie-based caching 

techniques and the Levenshtein Distance algorithm. Trie-based caching functions to significantly 

increase search speed by pre-indexing document keywords & autosuggestion. Meanwhile, the 

Levenshtein Distance algorithm improves the accuracy of the system in handling misspelled 

queries or searches with partial matches. The implementation of both algorithms significantly 

improved search performance by 43.23%, reducing the processing time to 44.88 ms, compared to 

78.92 ms in the previous search engine that did not utilize caching. In addition, this system also 

achieved an increase in Precision from the previous 50.00% to 97.50%, Recall increased from 

41.75% to 94.00%, and F1 Score also increased from 45% to 95%. These values indicate that this 

system is effective in finding relevant documents while reducing irrelevant search results. The 

combination of Trie-based caching and Levenshtein Distance not only increases search speed but 

also provides more accurate search results. Thus, this study successfully provides a solution to 

improve the performance of the document search engine at PT Chemco Harapan Nusantara, 

thereby supporting the company's operational efficiency amidst the challenges of increasingly 

complex data growth. 

Keywords — Trie-Based Caching ; Levenshtein Distance ; Search Engine Performance ; 

Misspelled Queries ; Auto Suggestion. 

1. INTRODUCTION 

PT Chemco Harapan Nusantara is a company that manages a variety of operational 

and procedural documents that require rapid and precise access. Therefore, efficient 

document management is a critical component of its operations. These documents contain 

the necessary information for daily operations, reporting, and compliance with audit 

standards, including those from internal audits such as ISO and those from consumers. The 

performance of a document search system that is occasionally inaccurate can result in a 

variety of issues, including the inability to locate relevant documents and long search 

times. This ultimately affects negative assessments during audits from customers or during 

certification audits such as ISO. A frequent issue is the system's incapacity to adapt 

queries to variations in writing, such as typos or differences in capital and small letters. 

This can lead to search results that do not align with the user's requirements. 
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Consequently, a solution is required to enhance the efficiency of the document search 

engine, enabling more rapid and precise access to information. 

In this context, the document search approach using the current search engine often 

faces limitations in handling increasing data volumes, variations in writing, and typos. 

Current search engines tend to be inefficient in providing relevant results if there is a slight 

error in writing a query from the user, such as different spellings or capitalization errors. 

This condition causes users to be dissatisfied because the search results do not match their 

needs. Difficulty in finding documents also affects the effectiveness of company 

operations because employees have to spend more time finding relevant documents. 

To overcome these challenges, this study proposes the implementation of a hybrid 

approach that combines two techniques, namely Trie-Based Caching and the Levenshtein 

Distance algorithm. The Trie-Based Caching approach uses the Trie data structure to store 

and manage words based on prefixes, allowing fast and efficient searches for words or 

documents based on prefixes. Trie is very effective in implementing features such as auto-

suggest or autocomplete, which make it easier for users to find relevant information faster. 

Through Trie, the system can build an efficient index for searching words based on 

prefixes, so that when users type the first few letters, the system can provide appropriate 

results without having to check the entire data thoroughly. This Trie can also help 

minimize search time because it will only check the relevant part of the data, not the entire 

database. 

In addition, By computing the minimum number of modifications (insertions, 

deletions, or character substitutions) necessary to transform one string into another, the 

Levenshtein Distance algorithm is employed to evaluate the similarity between two 

strings. This algorithm is very useful in the context of document search, because it is able 

to overcome the problem of spelling variations caused by typos or minor differences in 

spelling. By implementing this algorithm, the document search system can be more 

tolerant of user input errors, and can still provide relevant and appropriate results. The 

combination of Trie and the Levenshtein Distance algorithm provides flexibility in dealing 

with input variations, while increasing search speed. 

The application of this hybrid approach not only aims to improve search efficiency, 

but also to provide more accurate and relevant results for users. Trie-based caching allows 

the system to quickly find documents that match the user's input prefix, while the 

Levenshtein Distance algorithm ensures that spelling variations and typos will not hinder 

the search. In this way, the search engine can display results that are more in line with user 

expectations and reduce search errors. 

In terms of search speed and result accuracy, it is anticipated that this hybrid 

approach will enhance the performance of the document search engine at PT Chemco 

Harapan Nusantara. Implementation of Trie-based Caching with Least Recently Used 

(LRU) policy will help in efficient cache management, where the cache will store the 

words that are most frequently accessed by the user, and automatically remove the words 

that are rarely accessed. This aims to improve search efficiency and memory usage. 

Meanwhile, the Levenshtein Distance algorithm will ensure the accuracy of the search 

results, even in situations where the user makes typos or spelling variations. Trie-based 

caching allows the search system to store and manage document indexes based on 

frequently used prefixes. 

2. METHODOLOGY 

This study uses quantitative and experimental approaches to evaluate the 

performance of document search engines. The dataset is taken from the current document 
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search database of PT Chemco Harapan Nusantara. The methodology includes data 

collecting, data preprocessing, model implementation, and performance evaluation using 

metrics such as query latency, Precision, Recall and F1 Score. The flowchart visually 

outlines the process from data collection to model evaluation, providing a clear overview 

of the methodological framework. 

 
Figure 1 Research Design Flowchart. 

3. RESULTS AND DISCUSSION 

In this section, we will analyze and discuss the test results that have been carried out 
on the Trie-based caching and hybrid approaches. This analysis includes the advantages 
and limitations of implementing Trie-based caching in improving search performance. 

Performance Analysis of Trie-based Caching 
Based on results testing, the implementation of Trie-based caching shows 

improvement significant in performance search: 
1. Advantages of Trie-based Caching 

Trie-based caching has demonstrated the ability to improve average search response 
speed by up to 43.23% compared to searches conducted without caching. This significant 
improvement is achieved through the caching mechanism, which stores previously 
searched results. When identical or similar queries are entered, the Trie can directly access 
the cached results without needing to repeat the search across the database or document. 
This faster search performance is crucial for applications with high query loads or those 
requiring real-time search results, ensuring both efficiency and responsiveness. 
2. Limitations of Trie-based Caching 
1. Requires Additional Memory For Trie Structure 

- Even though Trie has efficiency in storing strings with the same prefix, the use of 
Trie-based caching is still consume lots of memory. 

2. Performance Decreases on Very Complex Queries 
- Trie-based caching is very effective for frequent queries repeated or own pattern 

general, but when the query becomes more complex or very specific, 
performance can decrease. 

- Complex queries involving long words or rarely cached maybe no get profit from 
caching, so that time response Can approach search without cache. 

- Trie performance can also be influenced If there is too many nodes to be checked 
for queries that are not general, so that time required for Trie traversing 
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increases. 
3. Conclusion of Trie-based Caching Performance Analysis 

In general overall, Trie-based caching is proven capable give improvement 
significant performance with excess main in the form of speed high response. However, 
the use of Trie-based caching remains need consideration related allocation memory 
addition as well as possible performance decrease for very complex queries. 

Trie-based caching is ideal for applications that require search with frequent patterns 
repeated, especially when speed and consistency results search become priority. However, 
for handle more scenarios area, for example search complex or with large data scale, 
approach This Possible need combined with method others, so that performance system 
can remain optimal in various condition search. 

Analysis Levenshtein Distance 
This section serve evaluation algorithm Levenshtein Distance in context his ability 

handle variation error Typing so that recall increases. Analysis This focus on recall as 
metric main, supported with threshold optimization for increase search engine 
effectiveness in tolerate error typing and differences small on query. Algorithm This tested 
on a database covering 1,000 variations error Typing in a way random and evaluated for 
his ability identify document relevant to various threshold setting. 
1. Levenstein's advantages 

The recall result of 76% shows that algorithm Levenshtein Distance is very effective 
in handle variation error typing. The majority document relevant succeed found, so that 
show robust algorithm This in face difference small on query. 

Threshold on the algorithm Levenshtein Distance is used For determine level 
tolerance to error in query writing. Higher threshold tall apply more matching tight, while 
the threshold is lower low allow more tolerance big to difference between queries and 
indexed documents. 

For determine the optimal threshold, algorithm tested using 1000 errors Typing 
random with threshold variation start from 0.5 to 0.9. Test results summarized in table 4.3, 
table 4.4 and table 4.5. 

Based on results evaluation, concluded that the optimal threshold for algorithm is 
0.6. This threshold setting allow algorithm tolerate up to 3 errors typing, with a recall of 
76%. 
2. Limitations Levenstein's 

Following is limitation Algorithm Levenshtein: 
1. Dependence on Optimal Threshold 

One of limitations main algorithm Levenshtein Distance is its dependence on the 
threshold setting. This study show that threshold value 0.6 give results best with tolerance 
until three typo, resulting in a recall of 76%. However, this threshold setting Possible No 
can applied in a way common in datasets with level error or different noise distributions. If 
the threshold is set too tight (for example, 0.8 or 0.9), algorithm fail identify document 
with error small, which causes decrease in recall. On the other hand, a threshold that is too 
loose can cause results that are not relevant, so that lower precision. Dependence This 
make algorithm not enough adaptive against dynamic datasets or heterogeneous. 
2. Precision Limited to High Error Cases 

Although algorithm Levenshtein Distance works Good For recognize document with 
error small, precise tend decrease in case with noise level or high error. For example, on a 
larger dataset big or with Lots typo random, algorithm Possible match documents that are 
not relevant only Because pattern the text similar with queries. Trade-off between recall 
and precision This the more clear when the threshold is relaxed, which can reduce quality 
results search. 

 
3. Sensitivity to Relevance Contextual 

Algorithm This only focuses on the similarity of text strings without consider 
relevance semantics or context from results matching. As a result, the algorithm can be 
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misordered document with difference typography small more tall than documents that 
have conformity more contextual meaningful. For example, a document that has term 
relevant in a way semantics but different in a way phonetics can ignored fully Because 
high edit distance. 
4. Inability Handle Variation Complex Linguistics 

Although algorithm Levenshtein Distance effective For error Typing simple, 
algorithm This difficulty handle variation more linguistics complex like synonyms, 
abbreviations, or multi-word phrases. As example, algorithm Possible fail matching 
queries like "quality assurance" with document that only mention "QA" because his 
inability recognize equality linguistics. Limitations This limit the application in scenarios 
that require understanding more languages advanced. 
3. Conclusion 

Algorithm Levenshtein Distance, though effective in handle error Typing simple 
with a recall of 76% at threshold 0.6, has a number of limitations like dependence on 
threshold settings, precision limited to cases error height, and inability handle relevance 
semantics as well as variation complex linguistics. 

Analysis Hybrid Approach 
This section will discuss analysis about a hybrid approach that combines Trie-based 

caching and algorithms Levenshtein Distance in system search. Combination second 
method This done For maximize speed and Recall, especially in facing a query that has 
variation error Typing (typo). The hybrid approach is designed For overcome limitations 
of each method If used in a way separate and utilize superiority both of them in different 
contexts. 

Hybrid approach works create good synergy between Trie-based caching and 
Levenshtein Distance, where each method give different contributions However each other 
complete. 

Trie-based caching is highly effective in improving search speed, particularly for 
queries that are frequently repeated or share similar patterns. By leveraging caching, 
previously performed search results can be stored and quickly accessed without the need 
for recalculating or traversing the Trie from the beginning. The use of a Trie allows search 
results to be stored based on prefixes, enabling queries with similar beginnings or patterns 
to be served with pre-existing results. This approach significantly reduces response time, 
making it especially beneficial for optimizing search performance in systems with high 
query repetition or pattern similarity. 

The Levenshtein Distance algorithm improves recall by adding a layer of tolerance 
for typographical errors in queries that are not found in the cache, effectively handling 
common variations in misspellings. By calculating the edit distance between the query and 
stored keywords, Levenshtein Distance allows the search engine to provide relevant 
results even when typos are present in the query. This algorithm works optimally in a 
hybrid approach, as it is only utilized during cache misses, ensuring computational load 
remains low while maintaining search accuracy. 

The combination of Trie-based caching and Levenshtein Distance delivers optimal 
performance by effectively addressing different query scenarios. Trie-based caching 
handles frequently used queries with speed and efficiency, while Levenshtein Distance 
ensures accuracy for queries not found in the cache, especially those containing 
typographical errors. These two methods complement each other, with Trie-based caching 
enhancing efficiency for repeated queries and Levenshtein Distance improving accuracy 
for more complex or error-prone queries. This synergy creates a balance between speed 
and recall, making the hybrid approach ideal for search systems that require flexibility and 
reliability in managing diverse queries. 

 

Recommendations Development 

Development system learning for dynamic threshold in algorithm Levenshtein 
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Distance can increase accuracy search with adjust the threshold automatic based on user 

query patterns, context search, or data characteristics. With use machine learning 

approach, systems can determine the optimal threshold adaptive based on behavior users 

and historical data, so that capable handle error Typing with more accurate and relevant. 

Future research can integrate more techniques forward, like search model semantics or 

method based on machine learning, for increase accuracy and adaptability system, making 

it more strong and suitable for diverse and large-scale datasets big 

4. CONCLUSION 

Based on the research and implementation of a hybrid approach combining Trie-

based caching and Levenshtein Distance algorithms to optimize document search engine 

performance at PT Chemco Harapan Nusantara, several key conclusions can be drawn: 

The hybrid search engine achieved significant performance improvements over the 

current search engine, with query latency reduced from 78.92ms to 44.88ms, precision 

increased from 50.00% to 97.50%, recall improved from 41.75% to 94.00%, and F1 Score 

enhanced from 45.00% to 95.00%. These substantial enhancements highlight the 

effectiveness of combining both algorithms to optimize search performance, delivering 

faster, more accurate, and more comprehensive search results. 

The implementation of trie-based caching demonstrated a 43.23% improvement in 

response time by effectively reducing the need for repeated full database searches. This 

caching mechanism proved particularly beneficial for frequently repeated queries, queries 

with common prefixes, and auto-suggestion functionality, highlighting its ability to 

optimize query handling and enhance overall system performance. 

The application of the Levenshtein Distance algorithm, with an optimal threshold 

setting of 0.6, significantly improves the system's ability to handle up to three character 

variations in search terms, case-sensitivity variations, and common typos. This approach 

improves recall by 76% for queries with spelling errors, providing effective error tolerance 

while maintaining search accuracy and ensuring robust handling of various user input 

variations. 

Future Work 

In the ever-evolving search technology landscape, optimizing search performance 

and user experience requires an innovative approach that balances accuracy, speed, and 

adaptability. Modern systems increasingly incorporate sophisticated algorithms and 

intelligent mechanisms to handle different types of queries, user behaviors, and data 

complexities. By leveraging machine learning, natural language processing, and adaptive 

algorithms, search engines are becoming not only more accurate but also more responsive 

to user needs. 

Dynamic threshold optimization was achieved through the development of machine 

learning models for automatic threshold adjustment in the Levenshtein Distance algorithm, 

allowing the system to adapt more effectively to varying query demands. By integrating 

user behavior patterns, the threshold settings were optimized to align with real-world 

usage, while context-aware adjustments based on query types further enhanced 

performance. Additionally, research into adaptive threshold mechanisms tailored for 

different document categories ensured a more precise and efficient search experience 

across diverse datasets. 

Advanced search capabilities are enhanced through the integration of semantic 

search functions, which enable better understanding of context and more accurate results. 

Natural language processing capabilities are developed to enable more intuitive and user-

friendly searches, while the implementation of multilingual support with special 
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algorithmic adjustments expands accessibility across a wide range of user groups. 
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